Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.287
Filtrar
1.
Science ; 382(6676): 1276-1281, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096384

RESUMO

The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas/virologia , Herpesvirus Galináceo 2/classificação , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Linfoma/virologia , Doença de Marek/história , Doença de Marek/virologia , Virulência/genética , Filogenia
2.
J Virol ; 97(11): e0112523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902398

RESUMO

IMPORTANCE: The Avibirnavirus infectious bursal disease virus is still an important agent which largely threatens global poultry farming industry economics. VP3 is a multifunctional scaffold structural protein that is involved in virus morphogenesis and the regulation of diverse cellular signaling pathways. However, little is known about the roles of VP3 phosphorylation during the IBDV life cycle. In this study, we determined that IBDV infection induced the upregulation of Cdc7 expression and phosphorylated the VP3 Ser13 site to promote viral replication. Moreover, we confirmed that the negative charge addition of phosphoserine on VP3 at the S13 site was essential for IBDV proliferation. This study provides novel insight into the molecular mechanisms of VP3 phosphorylation-mediated regulation of IBDV replication.


Assuntos
Avibirnavirus , Proteínas de Ciclo Celular , Galinhas , Vírus da Doença Infecciosa da Bursa , Proteínas Serina-Treonina Quinases , Proteínas Estruturais Virais , Replicação Viral , Animais , Avibirnavirus/química , Avibirnavirus/crescimento & desenvolvimento , Avibirnavirus/metabolismo , Infecções por Birnaviridae/enzimologia , Infecções por Birnaviridae/metabolismo , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Galinhas/virologia , Vírus da Doença Infecciosa da Bursa/química , Vírus da Doença Infecciosa da Bursa/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo
3.
J Virol ; 97(11): e0132223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882519

RESUMO

IMPORTANCE: Chickens immunized with the infectious laryngotracheitis chicken embryo origin (CEO) vaccine (Medivac, PT Medion Farma Jaya) experience adverse reactions, hindering its safety and effective use in poultry flocks. To improve the effect of the vaccine, we sought to find a strategy to alleviate the respiratory reactions associated with the vaccine. Here, we confirmed that co-administering the CEO vaccine with chIL-2 by oral delivery led to significant alleviation of the vaccine reactions in chickens after immunization. Furthermore, we found that the co-administration of chIL-2 with the CEO vaccine reduced the clinical signs of the CEO vaccine while enhancing natural killer cells and cytotoxic T lymphocyte response to decrease viral loads in their tissues, particularly in the trachea and conjunctiva. Importantly, we demonstrated that the chIL-2 treatment can ameliorate the replication of the CEO vaccine without compromising its effectiveness. This study provides new insights into further applications of chIL-2 and a promising strategy for alleviating the adverse reaction of vaccines.


Assuntos
Galinhas , Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Interleucina-2 , Células Matadoras Naturais , Linfócitos T Citotóxicos , Vacinas Virais , Animais , Administração Oral , Galinhas/imunologia , Galinhas/virologia , Túnica Conjuntiva/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/imunologia , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/prevenção & controle , Doenças Respiratórias/veterinária , Doenças Respiratórias/virologia , Linfócitos T Citotóxicos/imunologia , Traqueia/virologia , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
4.
Science ; 382(6667): 140-141, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824660
5.
J Virol ; 97(10): e0071623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737586

RESUMO

IMPORTANCE: Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.


Assuntos
Galinhas , Genoma Viral , Herpesvirus Galináceo 2 , Recombinação Homóloga , Doença de Marek , Telômero , Integração Viral , Animais , Galinhas/virologia , Genoma Viral/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/genética , Doença de Marek/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Telômero/genética , Vacinas Virais/imunologia , Ativação Viral , Latência Viral , Integração Viral/genética
6.
Viruses ; 15(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37243179

RESUMO

Routine surveillance in live poultry markets in the northern regions of Vietnam from 2016 to 2017 resulted in the isolation of 27 highly pathogenic avian H5N1 and H5N6 viruses of 3 different clades (2.3.2.1c, 2.3.4.4f, and 2.3.4.4g). Sequence and phylogenetic analysis of these viruses revealed reassortment with various subtypes of low pathogenic avian influenza viruses. Deep-sequencing identified minor viral subpopulations encoding variants that may affect pathogenicity and sensitivity to antiviral drugs. Interestingly, mice infected with two different clade 2.3.2.1c viruses lost body weight rapidly and succumbed to virus infection, whereas mice infected with clade 2.3.4.4f or 2.3.4.4g viruses experienced non-lethal infections.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Camundongos , Galinhas/virologia , Influenza Aviária/epidemiologia , Filogenia , Aves Domésticas/virologia , Vietnã/epidemiologia
7.
J Virol ; 97(3): e0003823, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779761

RESUMO

Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.


Assuntos
Vírus da Bronquite Infecciosa , Mamastrovirus , Mutagênese Insercional , Animais , Humanos , Regiões 3' não Traduzidas/genética , Galinhas/virologia , Vírus da Bronquite Infecciosa/genética , Mamastrovirus/genética , Mutagênese Insercional/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Replicação Viral/genética , Estabilidade de RNA/genética , Deleção de Sequência/genética
8.
J Virol ; 97(2): e0137922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749072

RESUMO

Despite active control strategies, including the vaccination program in poultry, H9N2 avian influenza viruses possessing mutations in hemagglutinin (HA) were frequently isolated. In this study, we analyzed the substitutions at HA residue 193 (H3 numbering) of H9N2 and investigated the impact of these mutations on viral properties. Our study indicated that H9N2 circulating in the Chinese poultry have experienced frequent mutations at HA residue 193 since 2013, with viruses that carried asparagine (N) being replaced by those with alanine (A), aspartic acid (D), glutamic acid (E), glycine (G), and serine (S), etc. Our results showed the N193G mutation impeded the multiple cycles of growth of H9N2, and although most of the variant HAs retained the preference for human-like receptors as did the wild-type N193 HA, the N193E mutation altered the preference for both human and avian-like receptors. Furthermore, these mutations substantially altered the antigenicity of H9N2 as measured by both monoclonal antibodies and antisera. In vivo studies further demonstrated that these mutations showed profound impact on viral replication and transmission of H9N2 in chicken. Viruses with D, E, or S at residue 193 acquired the ability to replicate in lungs of the infected chickens, whereas virus with G193 reduced its transmissibility in infected chickens to those in direct contact. Our findings demonstrated that variations at HA residue 193 altered various properties of H9N2, highlighting the significance of the continued surveillance of HA for better understanding of the etiology and effective control of H9N2 in poultry. IMPORTANCE H9N2 are widespread and have sporadically caused clinical diseases in humans. Extensive vaccinations in poultry helped constrain H9N2; however, they might have facilitated the evolution of the virus. It is therefore of importance to monitor the variation of the circulating H9N2 and evaluate its risk to both veterinary and public health. Here, we found substitutions at position 193 of HA from H9N2 circulated since 2013 and assessed the impact of several mutations on viral properties. Our data showed these mutations resulted in substantial antigenic change. N193E altered the binding preference of HA for human-like to both avian and human-like receptors. More importantly, N193G impaired the growth of H9N2 and its transmission in chickens, whereas mutations from N to D, E, and S enhanced the viral replication in lungs of chickens. Our study enriched the knowledge about H9N2 and may help implement an effective control strategy for H9N2.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Aminoácidos/genética , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Filogenia , Aves Domésticas
9.
Avian Pathol ; 52(2): 128-136, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36622371

RESUMO

Chicken parvovirus (ChPV), chicken infectious anaemia virus (CIAV) and fowl adenovirus serotype 4 (FAdV-4) are avian viruses that have emerged in recent years and have endangered the global poultry industry, causing great economic loss. In this study, a multiplex fluorescence-based loop-mediated isothermal amplification (mLAMP) assay for detecting ChPV, CIAV and FAdV-4 was developed to simultaneously diagnose single and mixed infections in chickens. Three primer sets and composite probes were designed according to the conserved regions of the NS gene of ChPV, VP1 gene of CIAV and hexon gene of FAdV-4. Each composite probe was labelled with a different fluorophore, which was detached to release the fluorescence signal after amplification. The target viruses were distinguished based on the colour of the mLAMP products. The mLAMP assay was shown to be sensitive, with detection limits of 307 copies of recombinant plasmids containing the ChPV target genes, 749 copies of CIAV and 648 copies of FAdV-4. The assay exhibited good specificity and no cross-reactivity with other symptomatically related avian viruses. When used on field materials, the results of the mLAMP assay were in 100% agreement with those of the previously published PCR assay. The mLAMP assay is rapid, economical, sensitive and specific, and the results of amplification are directly observable by eye. Therefore, the mLAMP assay is a useful tool for the clinical detection of ChPV, CIAV and FAdV-4 and can be applied in rural areas.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Vírus da Anemia da Galinha , Infecções por Parvoviridae , Doenças das Aves Domésticas , Animais , Adenoviridae , Infecções por Adenoviridae/diagnóstico , Infecções por Adenoviridae/veterinária , Aviadenovirus/genética , Vírus da Anemia da Galinha/genética , Galinhas/virologia , Filogenia , Doenças das Aves Domésticas/diagnóstico , Sorogrupo , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/veterinária
10.
J Virol ; 97(1): e0178522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511697

RESUMO

Type I interferon (IFN) response is the first line of host-based innate immune defense against viral infections. However, viruses have developed multiple strategies to counter host IFN responses, so they may continue infecting hosts via effective replication. Avian reovirus (ARV), an RNA virus, causes viral arthritis or tenosynovitis in chickens. Previous studies have shown that ARV is highly resistant to the antiviral effects of IFN. However, the underlying mechanisms that enable ARV to block the IFN pathway remain unclear. In this study, we found that ectopic expression of ARV protein, σA, significantly inhibited the production of IFN-ß induced by melanoma-differentiation-associated gene 5 (MDA5) and poly(I·C). Knockdown of σA during ARV infection enhances the IFN-ß response and suppresses viral replication. ARV σA inhibited the MDA5-mediated IFN-ß activation by targeting interferon regulatory factor 7 (IRF7). Further studies demonstrated that σA interacts with IRF7, thereby blocking IRF7 dimerization and nuclear translocation, finally leading to the inhibition of IFN-ß production. These findings reveal a novel mechanism that allows ARV to evade host antiviral immunity. IMPORTANCE ARV, the causative agent of viral arthritis or tenosynovitis in chickens, has a significant economic impact as it results in poor weight gain and increased feed conversion ratios. The MDA5-mediated IFN-ß signal pathway plays an important role in host antiviral defense. Therefore, RNA viruses have developed mechanisms to counter this signaling pathway and successfully establish infection. However, the strategies adopted by ARV to block MDA5-IRF7 signaling remain unclear. In the current study, we demonstrated that ARV σA inhibits this pathway by binding to IRF7, which blocked IRF7 dimerization and nuclear translocation. Our findings may provide insights into how avian reovirus counteracts the innate antiviral immunity of the host to ensure viral replication.


Assuntos
Fator Regulador 7 de Interferon , Interferon Tipo I , Orthoreovirus Aviário , Tenossinovite , Proteínas do Core Viral , Animais , Linhagem Celular , Galinhas/virologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Orthoreovirus Aviário/fisiologia , Tenossinovite/veterinária , Tenossinovite/virologia , Proteínas do Core Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
J Virol ; 96(19): e0134422, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125302

RESUMO

Subtype H7 avian influenza A viruses (IAVs) are enzootic in wild aquatic birds and have caused sporadic spillovers into domestic poultry and humans. Here, we determined the distribution of fucosylated α2,3 sialoglycan (i.e., sialyl Lewis X [SLeX]) in chickens and five common dabbling duck species and the association between SLeX and cell/tissue/host tropisms of H7 IAVs. Receptor binding analyses showed that H7 IAVs bind to both α2,3-linked (SA2,3Gal) and α2,6-linked sialic acids (SA2,6Gal), but with a higher preference for SLeX; H7 IAVs replicated more efficiently in SLeX-overexpressed than SLeX-deficient MDCK cells. While chickens and all tested dabbling ducks expressed abundant SA2,3Gal and SA2,6Gal, SLeX was detected in both respiratory and gastrointestinal tissues of chickens and mallard ducks and in only the respiratory tissues of gadwall, green-wing teal, and northern shoveler but not in wood ducks. Viral-tissue binding assays showed that H7 IAVs bind to chicken colon crypt cells that express SLeX but fewer bind to mallard colon crypt cells, which do not express SLeX; H7 IAVs bind efficiently to epithelial cells of all tissues expressing SA2,3Gal. High viral replication was identified in both chickens and mallards infected with an H7 virus, regardless of SLeX expression, and viruses were detected in all cells to the same degree as viruses detected in the viral-tissue binding assays. In summary, this study suggests that SLeX facilitates infection of H7 viruses, but other types of SA2,3Gal glycan receptors shape the tissue/host tropisms of H7 IAVs. IMPORTANCE In addition to causing outbreaks in domestic poultry, subtype H7 IAVs can cause sporadic spillover infections in lower mammals and humans. In this study, we showed that SLeX expression varies among wild dabbling ducks. Although it facilitated virus binding and affected infection of H7 IAV in cells, SLeX expression is not the only determinant of viral replication at either the tissue or host level. This study suggested that access to heterologous SA2,3Gal glycan receptors, including fucosylated α2,3-linked sialoglycans, shape tissue and host tropism of H7 IAVs in aquatic wild birds.


Assuntos
Vírus da Influenza A , Influenza Aviária , Antígeno Sialil Lewis X , Tropismo Viral , Animais , Animais Selvagens/virologia , Galinhas/virologia , Cães , Patos/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Polissacarídeos , Ácidos Siálicos , Antígeno Sialil Lewis X/metabolismo
12.
J Virol ; 96(17): e0071722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35950858

RESUMO

The geographical spread and inter-host transmission of the subgroup J avian leukosis virus (ALV-J) may be the most important issues for epidemiology. An integrated analysis, including phylogenetic trees, homology modeling, evolutionary dynamics, selection analysis and viral transmission, based on the gp85 gene sequences of the 665 worldwide ALV-J isolates during 1988-2020, was performed. A new Clade 3 has been emerging and was evolved from the dominating Clade 1.3 of the Chinese Yellow-chicken, and the loss of a α-helix or ß-sheet of the gp85 protein monomer was found by the homology modeling. The rapid evolution found in Clades 1.3 and 3 may be closely associated with the adaption and endemicity of viruses to the Yellow-chickens. The early U.S. strains from Clade 1.1 acted as an important source for the global spread of ALV-J and the earliest introduction into China was closely associated with the imported chicken breeders in the 1990s. The dominant outward migrations of Clades 1.1 and 1.2, respectively, from the Chinese northern White-chickens and layers to the Chinese southern Yellow-chickens, and the dominating migration of Clade 1.3 from the Chinese southern Yellow-chickens to other regions and hosts, indicated that the long-distance movement of these viruses between regions in China was associated with the live chicken trade. Furthermore, Yellow-chickens have been facing the risk of infections of the emerging Clades 2 and 3. Our findings provide new insights for the epidemiology and help to understand the critical factors involved in ALV-J dissemination. IMPORTANCE Although the general epidemiology of ALV-J is well studied, the ongoing evolutionary and transmission dynamics of the virus remain poorly investigated. The phylogenetic differences and relationship of the clades and subclades were characterized, and the epidemics and factors driving the geographical spread and inter-host transmission of different ALV-J clades were explored for the first time. The results indicated that the earliest ALV-J (Clade 1.1) from the United States, acted as the source for global spreads, and Clades 1.2, 1.3 and 3 were all subsequently evolved. Also the epidemiological investigation showed that the early imported breeders and the inter-region movements of live chickens facilitated the ALV-J dispersal throughout China and highlighted the needs to implement more effective containment measures.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Galinhas , Filogenia , Doenças das Aves Domésticas , Animais , Leucose Aviária/epidemiologia , Leucose Aviária/transmissão , Vírus da Leucose Aviária/genética , Galinhas/virologia , China , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Estados Unidos
13.
J Virol ; 96(17): e0099422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993736

RESUMO

Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária , Perus , Fatores de Virulência , Virulência , Animais , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/mortalidade , Influenza Aviária/virologia , Perus/virologia , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genética
14.
J Virol ; 96(15): e0080722, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852354

RESUMO

Fowl adenovirus serotype 4 (FAdV-4) infection results in serious hepatitis-hydropericardium syndrome (HHS) in broilers, which has caused great economic losses to the poultry industry; however, the specific host responses to FAdV-4 remain unknown. In this study, we identified 141 high-confidence protein-protein interactions (PPIs) between the main viral proteins (Hexon, Fiber 1, Fiber 2, and Penton bases) and host proteins via a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. We found that heat shock protein 70 (Hsp70), the protein with the highest score, and its cofactor DnaJ heat shock protein 40 family member C7 (DnaJC7) could negatively regulate the replication of FAdV-4. Furthermore, the nucleotide binding domain (NBD) of Hsp70 and the J domain of DnaJC7 were necessary for inhibiting FAdV-4 replication. We verified that DnaJC7 as a bridge could bind to Hsp70 and Hexon, assisting the indirect interaction between Hsp70 and Hexon. In addition, we found that FAdV-4 infection strongly induced the expression of autophagy proteins and cellular Hsp70 in a dose-dependent manner. Blockage of Hexon by Hsp70 overexpression was significantly reduced when the autophagy pathway was blocked by the specific inhibitor chloroquine (CQ). Our results showed that Hsp70 was co-opted by DnaJC7 to interact with viral Hexon and inhibited Hexon through the autophagy pathway, leading to a considerable restriction of FAdV-4 replication. IMPORTANCE FAdV-4, as the main cause of HHS, has quickly spread all over the world in recent years, seriously threatening the poultry industry. The aim of this study was to identify the important host proteins that have the potential to regulate the life cycle of FAdV-4. We found that Hsp70 and DnaJC7 played crucial roles in regulating the amount of viral Hexon and extracellular viral titers. Moreover, we demonstrated that Hsp70 interacted with viral Hexon with the assistance of DnaJC7, followed by suppressing Hexon protein through the autophagy pathway. These results provide new insight into the role of the molecular chaperone complex Hsp70-DnaJC7 in FAdV-4 infection and suggest a novel strategy for anti-FAdV-4 drug development by targeting the specific interactions among Hsp70, DnaJC7 and Hexon.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Proteínas do Capsídeo , Galinhas , Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Replicação Viral , Adenoviridae/classificação , Adenoviridae/efeitos dos fármacos , Adenoviridae/crescimento & desenvolvimento , Adenoviridae/isolamento & purificação , Infecções por Adenoviridae/tratamento farmacológico , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Animais , Autofagia/efeitos dos fármacos , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/metabolismo , Galinhas/virologia , Cloroquina/farmacologia , Cromatografia Líquida , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/virologia , Sorogrupo , Espectrometria de Massas em Tandem , Replicação Viral/efeitos dos fármacos
15.
Anim Genet ; 53(5): 640-656, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35739459

RESUMO

Avian viruses of economic interest are a significant burden on the poultry industry, affecting production traits and resulting in mortality. Furthermore, the zoonosis of avian viruses risks pandemics developing in humans. Vaccination is the most common method of controlling viruses; however current vaccines often lack cross-protection against multiple strains of each virus. The mutagenicity of these viruses has also led to virulent strains emerging that can overcome the protection offered by vaccines. Breeding chickens with a more robust innate immune response may help in tackling current and emerging viruses. Understanding the genetic evolution of different lines will thus provide a useful tool in helping the host in the fight against pathogens. This study focuses on the interferon genes and their receptors in different chicken lines that are known to be more resistant or susceptible to particular avian viruses. Comparing genotypic differences in these core immune genes between the chicken lines may explain the phenotypic differences observed and aid the identification of causative variations. The relative resistance/susceptibility of each line to viruses of interest (Marek's disease virus, infectious bursal disease, infectious bronchitis virus and avian influenza virus) has previously been determined. Here we identify single nucleotide polymorphisms in interferons and downstream genes. Functional prediction tools were used to identify variants that may be affecting protein structure, mRNA secondary structure or transcription factor and micro-RNA binding sites. These variants were then considered in the context of the research lines and their distribution between phenotypes. We highlight 60 variants of interest in the interferon pathway genes that may account for susceptibility/resistance to viral pathogens.


Assuntos
Galinhas , Resistência à Doença , Interferons , Doenças das Aves Domésticas , Animais , Galinhas/genética , Galinhas/virologia , Variação Genética , Interferons/genética , Aves Domésticas , Doenças das Aves Domésticas/virologia
16.
J Virol ; 96(10): e0024122, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510864

RESUMO

In this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.2 of class I on the basis of the fusion (F) gene sequences, which were distinct from the genotypes identified in other countries. Most of the isolates (212/232) were shown to have the typical F gene molecular characteristics of class I NDVs, while a few (20/232) contained mutations at the site of the conventional start codon of the F gene, which resulted in open reading frames (ORFs) altered in length. The isolates with ACG, CTA, and ATA mutations showed different levels of increased virulence and replication capacity, suggesting that these viruses may be transitional types during the evolution of class I NDVs from avirulent to virulent. Further evaluation of biological characteristics with recombinant viruses obtained by reverse genetics demonstrated that the ATG located at genomic positions 4523 to 4525 was the authentic start codon in the F gene of class I NDV, and the specific ATA mutations which contributed to the expression of F protein on the surface of infected cells were the key determinants of increased replication capacity and virulence. Interestingly, the mutation at the corresponding site of genotype II LaSota of class II had no effects on the virulence and replication capacity in chickens. Our results suggest that the alteration of virulence and replication capacity caused by specific mutations in the F gene could be a specific characteristic of class I NDVs and indicate the possibility of the emergence of virulent NDVs due to the persistent circulation of class I NDVs. IMPORTANCE The available information on the distribution, genetic diversity, evolution, and biological characteristics of class I Newcastle disease viruses (NDVs) in domestic poultry is currently very limited. Here, identification of class I NDVs at nationwide live bird markets (LBMs) in China was performed and representative isolates were characterized. A widespread distribution of genotype 1.1.2 of class I NDVs was found in multiple bird species at LBMs in China. Though most isolates demonstrated typical molecular characteristics of class I NDVs, a few that contained specific mutations at the site of the conventional start codon of the fusion gene with increased virulence and replication capacity were identified for the first time. Our findings indicate that the virulence of class I NDVs could have evolved, and the widespread transmission and circulation of class I NDVs may represent a potential threat for disease outbreaks in poultry.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Animais , Galinhas/virologia , China/epidemiologia , Códon de Iniciação , Comércio , Monitoramento Epidemiológico/veterinária , Genótipo , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/genética , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Virulência/genética
17.
Vet Med Sci ; 8(4): 1570-1577, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451231

RESUMO

INTRODUCTION: Avian influenza viruses (AIV) cause significant economic losses to poultry farmers worldwide. These viruses have the ability to spread rapidly, infect entire poultry flocks, and can pose a threat to human health. The National Influenza Centre (NIC) at the Noguchi Memorial Institute for Medical Research in collaboration with the Ghana Armed forces (GAF) and the U.S. Naval Medical Research Unit No. 3, Ghana Detachment (NAMRU-3) performs biannual surveillance for influenza viruses among poultry at military barracks throughout Ghana. This study presents poultry surveillance data from the years 2017 to 2019. METHODOLOGY: Tracheal and cloacal swabs from sick and healthy poultry were collected from the backyards of GAF personnel living quarters and transported at 4°C to the NIC. Viral ribonucleic acid (RNA) was isolated and analyzed for the presence of influenza viruses using real-time polymerase chain reaction (PCR) assays. Viral nucleic acids extracted from influenza A-positive specimens were sequenced using universal influenza A-specific primers. RESULTS: Influenza A H9N2 virus was detected in 11 avian species out of 2000 samples tested. Phylogenetic analysis of viral haemagglutinin (HA) protein confirms the possibility of importation of viruses from North Africa and Burkina Faso. Although the detected viruses possess molecular markers of virulence and mammalian host adaptation, the HA cleavage site anlaysis confirmed low pathogenicity of the viruses. CONCLUSIONS: These findings confirm the ongoing spread of H9 viruses among poultry in Ghana. Poultry farmers need to be vigilant for sick birds and take the appropriate public health steps to limit the spread to other animals and spillover to humans.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Filogenia , Animais , Galinhas/virologia , Fazendas , Gana/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Aves Domésticas/virologia , Proteínas Virais
18.
Microb Pathog ; 166: 105513, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378244

RESUMO

IBV infection may lead to reduced egg production and poor egg quality in layer flocks. The DMV/1639 strain was recently identified as one of the most dominant IBV variants isolated from Canadian layer flocks with egg production problems. The current study aimed to investigate the immunopathogenesis of the Canadian DMV/1639 strain in laying chickens. Specific-pathogen-free (SPF) layers were infected at the peak of lay (29 weeks; n = 10) with an uninfected control group (n = 10). Egg production in the infected group dropped to 40% by the fifth day post-infection (dpi). Five birds from the infected and the control groups were euthanized at 5 and 10 dpi. Ovarian regression and shortened oviduct with marked histopathological changes were observed in the infected group at 10 dpi. An increase in the IBV viral load in reproductive tissues was accompanied by a significant recruitment (p < 0.05) of KUL01+ macrophages and CD4+ and CD8+ T cell subsets at 10 dpi. Additionally, anti-IBV antibody response was detected in serum and locally in the reproductive tract washes of the infected group. Overall, our findings contribute to the understanding of the pathogenicity of the Canadian DMV/1639 strain and the subsequent host responses in the reproductive tract of chickens.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Canadá , Galinhas/virologia , Infecções por Coronavirus/veterinária , Doenças das Aves Domésticas/virologia
19.
Sci Rep ; 12(1): 2081, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136109

RESUMO

Although avian influenza A viruses (avian IAVs) bind preferentially to terminal sialic acids (Sia) on glycans that possess Siaα2-3Gal, the actual glycan structures found in chicken respiratory tracts have not been reported. Herein, we analyzed N-glycan structures in chicken trachea and lung, the main target tissues of low pathogenic avian IAVs. 2-Aminopyridine (PA)-labeled N-glycans from chicken tissues were analyzed by combined methods using reversed-phase liquid chromatography (LC), electrospray ionization (ESI)-mass spectrometry (MS), MS/MS, and multistage MS (MSn), with or without modifications using exoglycosidases, sialic acid linkage-specific alkylamidation (SALSA), and/or permethylation. The results of SALSA indicated that PA-N-glycans in both chicken trachea and lung harbored slightly more α2,6-Sia than α2,3-Sia. Most α2,3-Sia on N-glycans in chicken trachea was a fucosylated form (sialyl Lewis X, sLex), whereas no sLex was detected in lung. By contrast, small amounts of N-glycans with 6-sulfo sialyl LacNAc were detected in lung but not in trachea. Considering previous reports that hemagglutinins (HAs) of avian IAVs originally isolated from chicken bind preferentially to α2,3-Sia with or without fucosylation and/or 6-sulfation but not to α2,6-Sia, our results imply that avian IAVs do not evolve to possess HAs that bind preferentially to α2,6-Sia, regardless of the abundance of α2,6-Sia.


Assuntos
Galinhas/virologia , Vírus da Influenza A/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Animais , Galinhas/metabolismo , Cromatografia de Fase Reversa , Influenza Aviária/transmissão , Influenza Aviária/virologia , Pulmão/metabolismo , Masculino , Doenças das Aves Domésticas/virologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Traqueia/metabolismo
20.
Virology ; 568: 115-125, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35152043

RESUMO

Marek's disease (MD) vaccines reduce the incidence of MD but cannot control virus shedding. To develop new vaccines, it is essential to elucidate mechanisms of immunity to Marek's disease virus (MDV) infection. In this regard, gamma delta (γδ) T cells may play a significant role in prevention of viral spread and tumor surveillance. Here we demonstrated that MDV vaccination induced interferon (IFN)-γ+CD8α+ γδ T cells and transforming growth factor (TGF)-ß+ γδ T cells in lungs. γδ T cells from MDV-infected chickens exhibited cytotoxic activity. Importantly, γδ T cells from the vaccinated/challenged group exhibited maximum cytotoxic activity following ex vivo stimulation. These results suggest that MDV vaccines activate effector γδ T cells which may be involved in the development of protective immune responses against MD. Further, it was demonstrated that MDV infection increases the frequency of a subpopulation of γδ T cells expressing membrane-bound TGF-ß in MDV-infected birds.


Assuntos
Galinhas/imunologia , Doença de Marek/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Galinhas/virologia , Citocinas , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunização , Imunofenotipagem , Ativação Linfocitária , Contagem de Linfócitos , Doença de Marek/prevenção & controle , Doença de Marek/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Vacinas Virais/imunologia , Replicação Viral , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...